Pages

Jumat, 11 Mei 2012

Translasi (biomolekuler)


Translasi
            Translasi adalah proses penerjemahan kode genetik oleh tRNA ke dalam urutan asam amino yang menyusun suatu polipeptida atau protein.

Prosesing RNA
            Bila dibandingkan dengan transkripsi, translasi merupakan proses yang lebih rumit karena melibatkan fungsi berbagai makromolekul. Oleh karena kebanyakan di antara makromolekul ini terdapat dalam jumlah besar di dalam sel, maka sistem translasi menjadi bagian utama mesin metabolisme pada tiap sel. Makromolekul yang harus berperan dalam proses translasi tersebut meliputi:
1. Lebih dari 50 polipeptida serta 3 hingga 5 molekul RNA di dalam tiap ribosom
2. Sekurang-kurangnya 20 macam enzim aminoasil-tRNA sintetase yang akan mengaktifkan asam amino
3. Empat puluh hingga 60 molekul tRNA yang berbeda
4. Sedikitnya 9 protein terlarut yang terlibat dalam inisiasi, elongasi, dan terminasi
polipeptida.
            Translasi, atau pada hakekatnya sintesis protein, berlangsung di dalam ribosom, suatu struktur organel yang banyak terdapat di dalam sitoplasma. Ribosom terdiri atas dua subunit, besar dan kecil, yang akan menyatu selama inisiasi translasi dan terpisah ketika translasi telah selesai. Translasi menjadi tiga tahap (sama seperti pada transkripsi) yaitu inisiasi, elongasi, dan terminasi. Semua tahapan ini memerlukan faktor-faktor protein yang membantu mRNA, tRNA, dan ribosom selama proses translasi. Inisiasi dan elongasi rantai polipeptida juga membutuhkan sejumlah energi. Energi ini disediakan oleh GTP (guanosin triphosphat), suatu molekul yang mirip dengan ATP.


1.  Inisiasi
            Tahap inisiasi terjadi karena adanya tiga komponen yaitu mRNA, sebuah tRNA yang memuat asam amino pertama dari polipeptida, dan dua sub unit ribosom.
            Sebuah molekul mRNA akan terikat pada permukaan ribosom yang kedua subunitnya telah bergabung. Pengikatan ini terjadi karena pada mRNA prokariot terdapat urutan basa tertentu yang disebut sebagai tempat pengikatan ribosom (ribosom binding site) atau urutan Shine-Dalgarno. Sementara itu, pada eukariot pengikatan ribosom dilakukan oleh ujung 5’ mRNA. Selanjutnya, berbagai aminoasil-tRNA akan berdatangan satu demi satu ke kompleks ribosom-mRNA ini dengan urutan sesuai dengan antikodon dan asam amino yang dibawanya. Urutan ini ditentukan oleh urutan triplet kodon pada mRNA. Ikatan peptida terbentuk di antara asam-asam amino yang terangkai menjadi rantai polipeptida di tapak P ribosom.
            Penggabungan asam-asam amino terjadi karena gugus amino pada asam amino yang baru masuk berikatan dengan gugus karboksil pada asam amino yang terdapat pada rantai polipeptida yang sedang diperpanjang. mRNA yang keluar dari nukleus menuju sitoplasma didatangi oleh ribosom, kemudian mRNA masuk ke dalam “celah” ribosom. Ketika mRNA masuk ke ribosom, ribosom “membaca” kodon yang masuk. Pembacaan dilakukan untuk setiap 3 urutan basa hingga selesai seluruhnya. Sebagai catatan ribosom yang datang untuk mebaca kodon biasanya tidak hanya satu, melainkan beberapa ribosom yang dikenal sebagai polisom membentuk rangkaian mirip tusuk satu, di mana tusuknya adalah “mRNA” dan daging adalah “ribosomnya”.
            Padaumumnya sebuah mRNA akan ditranslasi secara serempak oleh beberapa ribosom yang satu sama lain berjarak sekitar 90 basa di sepanjang molekul mRNA. Kompleks translasi yang terdiri atas sebuah mRNA dan beberapa ribosom ini dinamakan poliribosom atau polisom. Besarnya polisom sangat bervariasi dan berkorelasi dengan ukuran polipeptida yang akan disintesis. Sebagai contoh, rantai hemoglobin yang tersusun dari sekitar 150 asam amino disintesis oleh polisom yang terdiri atas lima buah ribosom (pentaribosom).
            Dengan demikian, proses pembacaan kodon dapat berlangsung secara berurutan. Ketika kodon I terbaca ribosom (misal kodonnya AUG), tRNA yang membawa antikodon UAC dan asam amino metionin datang. tRNA masuk ke celah ribosom. Ribosom di sini berfungsi untuk memudahkan perlekatan yang spesifik antara antikodon tRNA dengan kodon mRNA selama sintesis protein. Sub unit ribosom dibangun oleh protein-protein dan molekul-molekul RNA ribosomal.

2.  Elongasi
            Pada tahap elongasi dari translasi, asam amino-asam amino ditambahkan satu per satu pada asam amino pertama (metionin). Ribosom terus bergeser agar mRNA lebih masuk, guna membaca kodon II. Misalnya kodon II UCA, yang segera diterjemahkan oleh tRNA berarti kodon AGU sambil membawa asam amino serine. Di dalam ribosom, metionin yang pertama kali masuk dirangkaikan dengan serine membentuk dipeptida.
            Ribosom terus bergeser, membaca kodon III. Misalkan kodon III GAG, segera diterjemahkan oleh antikodon CUC sambil membawa asam amino glisin. tRNA tersebut masuk ke ribosom. Asam amino glisin dirangkaikan dengan dipeptida yang telah terbentuk sehingga membentuk tripeptida. Demikian seterusnya proses pembacaan kode genetika itu berlangsung di dalam ribobom, yang diterjemahkan ke dalam bentuk asam amino guna dirangkai menjadi polipeptida.
            Kodon mRNA pada ribosom membentuk ikatan hidrogen dengan antikodon molekul tRNA yang baru masuk yang membawa asam amino yang tepat. Molekul mRNA yang telah melepaskan asam amino akan kembali ke sitoplasma untuk mengulangi kembali pengangkutan asam amino. Molekul rRNA dari sub unit ribosom besar berfungsi sebagai enzim, yaitu mengkatalisis pembentukan ikatan peptida yang menggabungkan polipeptida yang memanjang ke asam amino yang baru tiba. Pemanjangan atau elongasi rantai polipeptida akan terus berlangsung hingga suatu tripet kodon yang menyandi terminasi memasuki tapak A.
            Sebelum suatu rantai polipeptida selesai disintesis terlebih dahulu terjadi deformilisasi pada f-metionin menjadi metionin. Terminasi ditandai oleh terlepasnya mRNA, tRNA di tapak P, dan rantai polipeptida dari ribosom. Selain itu, kedua subunit ribosom pun memisah. Pada terminasi diperlukan aktivitas dua protein yang berperan sebagai faktor pelepas atau releasing factors, yaitu RF-1 dan RF-2.

3.  Terminasi
            Tahap akhir translasi adalah terminasi. Elongasi berlanjut hingga kodon stop mencapai ribosom. Triplet basa kodon stop adalah UAA, UAG, dan UGA. Kodon stop tidak mengkode suatu asam amino melainkan bertindak sinyal untuk menghentikan translasi. Polipeptida yang dibentuk kemudian “diproses” menjadi protein.








Proses translasi
http://desybio.files.wordpress.com/2010/03/inisiasi-elongasi.gif

Perbedaan translasi pada Prokariot dan Eukariot.

            Pada prokariot translasi seringkali dimulai sebelum transkripsi berakhir. Hal ini dimungkinkan terjadi karena tidak adanya dinding nukleus yang memisahkan antara transkripsi dan translasi. Dengan berlangsungnya kedua proses tersebut secara bersamaan, ekspresi gen menjadi sangat cepat dan mekanisme nyala-padam (turn onturn off) ekspresi gen, seperti yang akan dijelaskan nanti, juga menjadi sangat efisien. Namun, tidak demikian halnya pada eukariot. Transkripsi terjadi di dalam nukleus, sedangkan translasi terjadi di sitoplasma (ribosom).

DAFTAR PUSTAKA
http://www.biomol.edublogs.org/files/2010/02/BAB-IV-TRANSLASI.pdf
http://desybio.wordpress.com/tag/2-translasi/

0 komentar:

Posting Komentar

 
Copyright 2012 Desty oktriaviani. Powered by Blogger
Blogger by Blogger Templates and Images by Wpthemescreator
Personal Blogger Templates